Structure and enumeration of two-connected graphs with prescribed three-connected components

نویسندگان

  • Andrei Gagarin
  • Gilbert Labelle
  • Pierre Leroux
  • Timothy Walsh
چکیده

We adapt the classical 3-decomposition of any 2-connected graph to the case of simple graphs (no loops or multiple edges). By analogy with the block-cutpoint tree of a connected graph, we deduce from this decomposition a bicolored tree tc(g) associated with any 2-connected graph g, whose white vertices are the 3-components of g (3-connected components or polygons) and black vertices are bonds arising from separating pairs of vertices of g and linking together the 3-components. Two fundamental species relationships on graphs and networks follow from this construction. The first one is a dissymmetry theorem which leads to the expression of the class B = B(F) of 2-connected graphs, all of whose 3-connected components belong to a given class F of 3-connected graphs, in terms of various rootings of B. The second one is a functional equation which characterizes the corresponding class R = R(F) of two-pole networks all of whose 3-connected components are in F . All the rootings of B are then expressed in terms of F and R. There follow corresponding identities for all the associated power series, in particular, the edge index series. These results are expressed in terms of species of structures. Using these results we enumerate several classes of labelled and unlabelled graphs, including series-parallel graphs, 2-connected planar graphs, K3,3-free 2-connected graphs and K3,3-free projective planar and toroidal graphs. MSC: 05C30; 05A15; 05C05; 05C40; 05C75

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION

‎The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$‎. ‎In this case‎, ‎$B$ is called a textit{metric basis} for $G$‎. ‎The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$‎. ‎Givi...

متن کامل

Matching Integral Graphs of Small Order

In this paper, we study matching integral graphs of small order. A graph is called matching integral if the zeros of its matching polynomial are all integers. Matching integral graphs were first studied by Akbari, Khalashi, etc. They characterized all traceable graphs which are matching integral. They studied matching integral regular graphs. Furthermore, it has been shown that there is no matc...

متن کامل

Two-connected graphs with prescribed three-connected components

We adapt the classical 3-decomposition of any 2-connected graph to the case of simple graphs (no loops or multiple edges). By analogy with the block-cutpoint tree of a connected graph, we deduce from this decomposition a bicolored tree tc(g) associated with any 2-connected graph g, whose white vertices are the 3-components of g (3-connected components or polygons) and whose black vertices are b...

متن کامل

Sufficient conditions for maximally edge-connected and super-edge-connected

Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...

متن کامل

An Algebraic Representation of Graphs and Applications to Graph Enumeration

We give a recursion formula to generate all the equivalence classes of connected graphs with coefficients given by the inverses of the orders of their groups of automorphisms. We use an algebraic graph representation to apply the result to the enumeration of connected graphs, all of whose biconnected components have the same number of vertices and edges. The proof uses Abel’s binomial theorem a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009